Features

- 8-bit Multiplexed Addresses/Outputs
- Fast Read Access Time 70 ns
- Dual Voltage Range Operation
 - Low-voltage Power Supply Range, 3.0V to 3.6V, or
 - Standard 5V ± 10% Supply Range
- Pin Compatible with Standard AT27C520
- Low-power CMOS Operation
 - 20 μ A Max Standby for ALE = V_{IH} and V_{CC} = 3.6V
 - 29 mW Max Active at 5 MHz for V_{CC} = 3.6V
- JEDEC Standard Packages
 - 20-lead TSSOP
 - 20-lead SOIC
- High-reliability CMOS Technology
 - 2,000V ESD Protection
 - 200 mA Latch-up Immunity
- Rapid Programming Algorithm 50 μs/Byte (Typical)
- CMOS- and TTL-compatible Inputs and Outputs
 - JEDEC Standard for LVTTL
- Integrated Product Identification Code
- Industrial Temperature Range
- Green (Pb/Halide-free) Packaging Option

1. Description

The AT27LV520 is a low-power, high-performance, 524,288-bit one-time programmable read-only memory (OTP EPROM) organized 64K by eight bits. It incorporates latches for the eight lower order address bits to multiplex with the eight data bits. This minimizes system chip count, reduces cost, and simplifies the design of multiplexed bus systems. It requires only one power supply in the range of 3.0V to 3.6V for normal read mode operation, making it ideal for fast, portable systems using battery power. Any byte can be accessed in less than 70 ns.

The AT27LV520 is available in 20-lead TSSOP and 20-lead SOIC, one-time programmable (OTP) plastic packages.

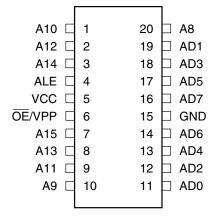
Atmel's innovative design techniques provide fast speeds that rival 5V parts while keeping the low power consumption of a 3.3V supply. At V_{CC} = 3.0V, any byte can be accessed in less than 70 ns. With a typical power dissipation of only 18 mW at 5 MHz and V_{CC} = 3.3V, the AT27LV520 consumes less than one fifth the power of a standard 5V EPROM. Standby mode is achieved by asserting ALE high. Standby mode supply current is typically less than 1 μ A at 3.3V.

The AT27LV520 operating with V_{CC} at 3.0V produces TTL level outputs that are compatible with standard TTL logic devices operating at V_{CC} = 5.0V. The device is also capable of standard 5-volt operation making it ideally suited for dual supply range systems or card products that are pluggable in both 3-volt and 5-volt hosts.

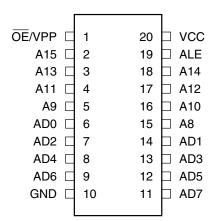
512K (64K x 8)
Multiplexed
Addresses/
Outputs
Low-voltage
OTP EPROM

AT27LV520

Not Recommended for New Designs.

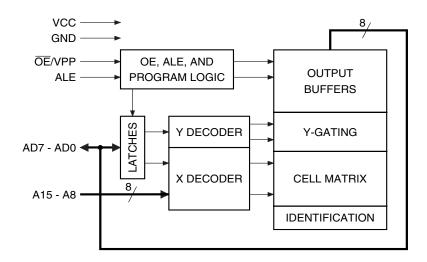


Atmel's AT27LV520 has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programing time is typically only 50 μ s/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry-standard programming equipment to select the proper programming algorithms and voltages. The AT27LV520 programs exactly the same way as a standard 5V AT27C520 and uses the same programming equipment.


2. Pin Configurations

Pin Name	Function
A8 - A15	Addresses
AD0 - AD7	Addresses/Outputs
OE /VPP	Output Enable/Program Supply
ALE	Address Latch Enable

2.1 20-lead TSSOP Top View


2.2 20-lead SOIC Top View

3. System Considerations

Switching under active conditions may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed datasheet limits, resulting in device non-conformance. At a minimum, a 0.1 μ F high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

4. Block Diagram

5. Absolute Maximum Ratings*

Temperature under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾
V _{PP} Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: 1. Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V DC which may overshoot to +7.0V for pulses of less than 20 ns.

6. Operating Modes

Mode/Pin	ALE	OE/V _{PP}	A8 - A15	AD0 - AD7
Read ⁽²⁾	V _{IL}	V _{IL}	Ai	D _{OUT}
Output Disable ⁽²⁾	V _{IL} /V _{IH}	V _{IH}	X ⁽¹⁾	High Z/A0 - A7
Standby	V _{IH}	V _{IH}	Ai	A0 - A7
Address Latch Enable ⁽²⁾	V _{IH}	V _{IH}	X	A0 - A7
Rapid Program ⁽³⁾	V _{IH}	V_{PP}	Ai	D _{IN}
Product Identification ⁽⁴⁾	V _{IL}	V _{IL}	$A9 = V_{H}^{(5)}$ $A8 = V_{IH} \text{ or } V_{IL}$ $A10 - A15 = V_{IL}$	Identification Code

Notes: 1. X can be V_{IL} or V_{IH}.

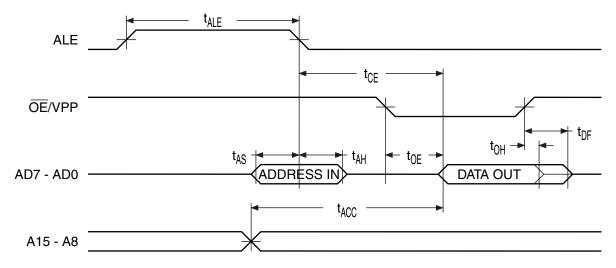
- 2. Read, output disable, and standby modes require 3.0V \leq V_{CC} \leq 3.6V, or 4.5V \leq V_{CC} \leq 5.5V.
- 3. Refer to Programming Characteristics.
- 4. $V_H = 12.0 \pm 0.5V$.
- 5. Two identifier bytes may be selected. All A8 A15 inputs are held low (V_{IL}) , except A9 which is set to V_H and A8 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

7. DC and AC Operating Conditions for Read Operation

	AT27LV520-70	AT27LV520-90
Industrial Operating Temp. (Case)	-40°C - +85°C	-40°C - +85°C
V. Comple	3.0V to 3.6V	3.0V to 3.6V
V _{CC} Supply	5V ± 10%	5V ± 10%

8. DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	Min	Max	Units
V _{CC} = 3.0V	to 3.6V				
I _{LI}	Input Load Current	V _{IN} = 0V to V _{CC}		±1	μΑ
I _{LO}	Output Leakage Current	V _{OUT} = 0V to V _{CC}		±5	μΑ
I _{SB} ⁽¹⁾	V _{CC} Standby Current	ALE = $V_{CC} \pm 0.3V$; Ai, ADi = $GND/V_{CC} \pm 0.3V$		20	μΑ
I _{cc}	V _{CC} Active Current	$f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, ALE = V_{IL}$		8	mA
V_{IL}	Input Low Voltage		-0.6	0.8	V
V _{IH}	Input High Voltage		2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.0 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -2.0 mA	2.4		V
V _{CC} = 4.5V	to 5.5V				
I _{LI}	Input Load Current	V _{IN} = 0V to V _{CC}		±1	μΑ
I _{LO}	Output Leakage Current	V _{OUT} = 0V to V _{CC}		±5	μΑ
I _{SB} ⁽¹⁾	V _{CC} Standby Current	ALE = $V_{CC} \pm 0.3V$; Ai, ADi = $GND/V_{CC} \pm 0.3V$		100	μΑ
I _{cc}	V _{CC} Active Current	f = 5 MHz, I _{OUT} = 0 mA, ALE = V _{IL}		20	mA
V _{IL}	Input Low Voltage		-0.6	0.8	V
V _{IH}	Input High Voltage		2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		

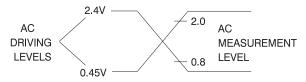

Note: 1. V_{CC} standby current will be slightly higher with ALE, Ai, and ADi at TTL levels.

AC Characteristics for Read Operation

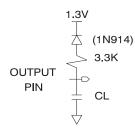
 $V_{CC} = 3.0V$ to 3.6V and 4.5V to 5.5V

			AT27LV520-70		AT27LV520-90		
Symbol	Parameter	Condition	Min	Max	Min	Max	Units
t _{ACC} (3)	Address to Output Delay	$ALE = \overline{OE}/V_{PP} = V_{IL}$		70		90	ns
t _{CE}	Address Latch Enable Low to Output Delay	Address Valid		55		70	ns
t _{AS}	Address Setup Time	$\overline{OE}/V_{PP} = V_{IH}$	12		15		ns
t _{AH}	Address Hold Time	$\overline{OE}/V_{PP} = V_{IH}$	12		15		ns
t _{ALE}	Address Latch Enable Width	$\overline{OE}/V_{PP} = V_{IH}$	40		45		ns
t _{OE} (3)	OE/V _{PP} to Output Delay	ALE = V _{IL}		30		35	ns
t _{DF} ⁽⁴⁾⁽⁵⁾	ŌE/V _{PP} High to Output Float	ALE = V _{IL}		25		25	ns
t _{OH}	Output Hold from Address or $\overline{\text{OE}}/\text{V}_{PP}$ Whichever Occurred First	ALE = V _{IL}	7		0		ns

10. AC Waveforms for Read Operation⁽¹⁾



- Notes: 1. Timing measurement reference levels for all speed grades are $V_{OL} = 0.8V$ and $V_{OH} = 2.0V$. Input AC drive levels are $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$.
 - 2. $\overline{\text{OE}}/\text{V}_{\text{PP}}$ may be delayed up to t_{CE} t_{OE} after the address is valid without impact on t_{CE} .
 - 3. \overline{OE}/V_{PP} may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} .
 - 4. This parameter is only sampled and is not 100% tested.
 - 5. Output float is defined as the point when data is no longer driven.

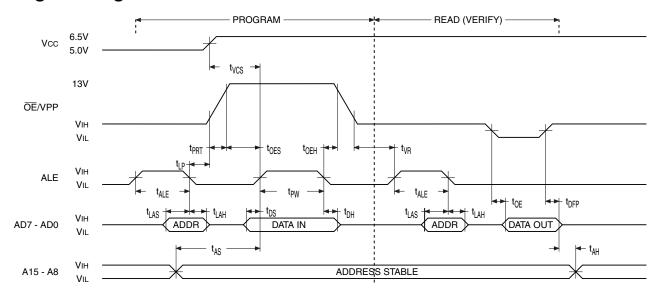


11. Input Test Waveforms and Measurement Levels

 $t_{\rm R},\,t_{\rm F}$ < 20 ns (10% to 90%)

12. Output Test Load

Note: $C_L = 100 \text{ pF}$ including jig capacitance.


13. Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ} C^{(1)}$

Symbol	Тур	Max	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	V _{OUT} = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

14. Programming Waveforms

Notes: 1. The Input Timing Reference is 0.8V for $V_{\rm IL}$ and 2.0V for $V_{\rm IH}$.

2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.

15. DC Programming Characteristics

 $T_A = 25 \pm 5^{\circ}\,C,\,V_{CC} = 6.5 \pm 0.25V,\,\overline{OE}/V_{PP} = 13.0 \pm 0.25V$

			Limits		
Symbol	Parameter	Test Conditions	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		±10	μΑ
V _{IL}	Input Low Level		-0.6	0.8	V
V _{IH}	Input High Level		2.0	V _{CC} + 1.0	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V
I _{CC2}	V _{CC} Supply Current (Program and Verify)			25	mA
I _{PP2}	OE/V _{PP} Current	ALE = V _{IH}		25	mA

16. AC Programming Characteristics

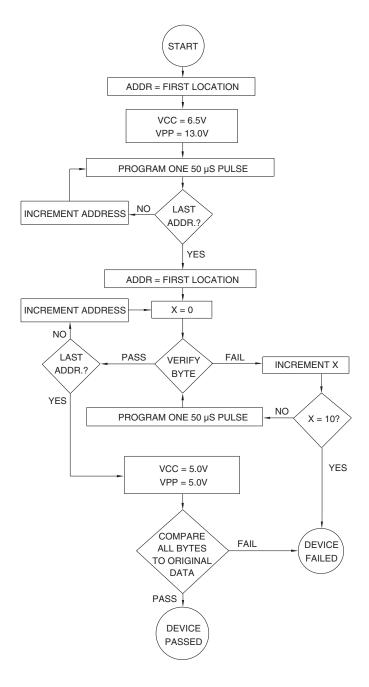
 $T_A = 25 \pm 5^{\circ}\,C,\,V_{CC} = 6.5 \pm 0.25V,\,\overline{OE}/V_{PP} = 13.0 \pm 0.25V$

			Lir	nits	
Symbol	Parameter ⁽¹⁾	Test Conditions	Min	Max	Units
t _{ALE}	Address Latch Enable Width		500		ns
t _{LAS}	Latched Address Setup Time		100		ns
t _{LAH}	Latched Address Hold Time		100		ns
t _{LP}	ALE Low to OE/V _{PP} High Voltage Delay		2		μs
t _{OES}	ŌE/V _{PP} Setup Time	Input Rise and Fall Times:	2		μs
t _{OEH}	ŌĒ/V _{PP} Hold Time	(10% to 90%) 20 ns	2		μs
t _{DS}	Data Setup Time	Input Pulse Levels:	2		μs
t _{DH}	Data Hold Time	0.45V to 2.4V	2		μs
t _{PW}	ALE Program Pulse Width ⁽²⁾		47.5	52.5	μs
t _{VR}	ŌĒ/V _{PP} Recovery Time	Input Timing Reference Level: 0.8V to 2.0V	2		μs
t _{VCS}	V _{CC} Setup Time	0.00 to 2.00	2		μs
t _{OE}	Data Valid from OE/V _{PP}	Output Timing Reference Level:		150	ns
t _{DFP}	OE/V _{PP} High to Output Float Delay ⁽³⁾	0.8V to 2.0V	0	130	ns
t _{AS}	Address Setup Time		2		μs
t _{AH}	Address Hold Time		0		μs
t _{PRT}	OE/V _{PP} Pulse Rise Time During Programming		50		ns

Notes: 1. V_{CC} must be applied simultaneously or before \overline{OE}/V_{PP} and removed simultaneously or after \overline{OE}/V_{PP} .

17. Atmel's AT27LV520 Integrated Product Identification Code

	Pins						Hex			
Codes	A8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	1	0	0	1	1	1	0	1	9D


Note: 1. The AT27LV520 has the same product identification code as the AT27C520. Both are programming compatible.

^{2.} Program Pulse width tolerance is 50 μ sec \pm 5%.

^{3.} This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven – see timing diagram.

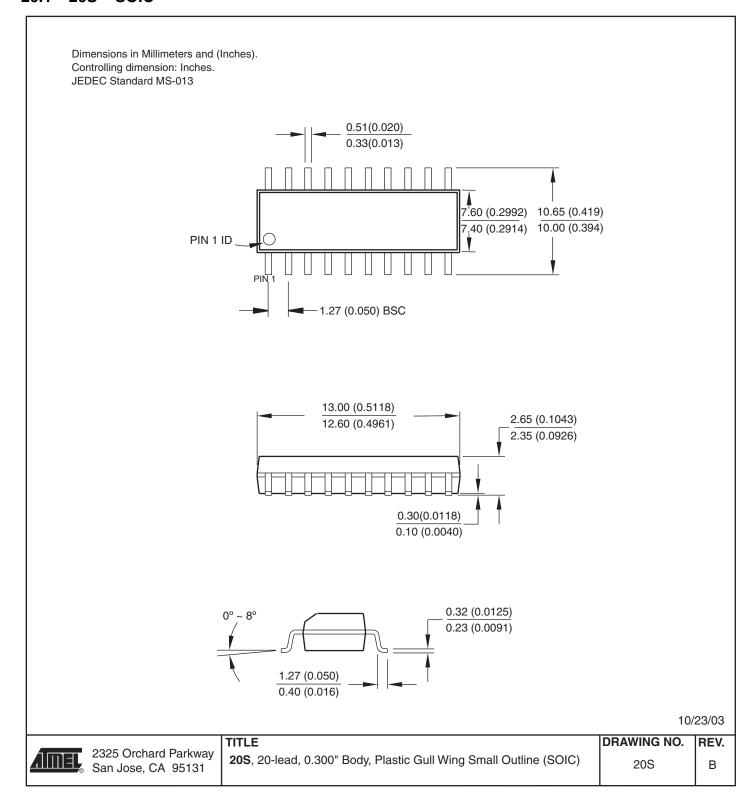
18. Rapid Programming Algorithm

A 50 μ s ALE pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and \overline{OE}/V_{PP} is raised to 13.0V. Each address is first programmed with one 50 μ s ALE pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 50 μ s pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. \overline{OE}/V_{PP} is then lowered to V_{IH} and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

19. Ordering Information

19.1 Standard Package

t _{ACC} (ns)	I _{CC} (mA) Active	Ordering Code	Package	Operation Range
70	8	AT27LV520-70SI	20\$	Industrial
		AT27LV520-70XI	20X	(-40°C to +85°C)
90	g.	AT27LV520-90SI	20S	Industrial
30	O	AT27LV520-90XI	20X	(-40°C to +85°C)

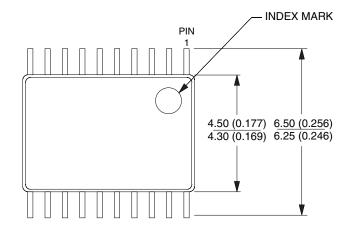

19.2 Green Package (Pb/Halide-free)

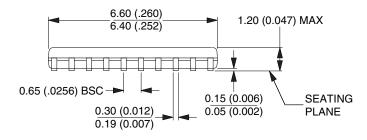
t _{ACC} (ns)	I _{CC} (mA) Active	Ordering Code	Package	Operation Range
70	8	AT27LV520-70SU AT27LV520-70XU	20S 20X	Industrial (-40°C to +85°C)
90	8	AT27LV520-90XU	20X	Industrial (-40°C to +85°C)

Package Type	
20\$	20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)
20X	20-lead, 4.4 mm Body Width, Plastic Thin Shrink Small Outline (TSSOP)

20. Packaging Information

20.1 20S - SOIC





20.2 20X - TSSOP

Dimensions in Millimeters and (Inches). Controlling dimension: Millimeters. JEDEC Standard MO-153 AC

10/23/03

2325 Orchard Parkway San Jose, CA 95131 **TITLE 20X**, (Formerly 20T), 20-lead, 4.4 mm Body Width, Plastic Thin Shrink Small Outline Package (TSSOP)

DRAWING NO. REV.

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex

France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support eprom@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.